The Internet and its Architecture
CS 360 Internet Programming

Daniel Zappala

Brigham Young University
Computer Science Department
A Network of Networks

- roughly hierarchical
 - Tier-1 ISPs provide national, international coverage
 - Tier-2 ISPs provide regional coverage
 - Tier-3 and lower levels provide local coverage
- any tier may sell to business and residential customers
- any ISP may have a link to any other ISP (not strictly hierarchical)
Qwest Tier-1 USA Map

Qwest iQ Networking Map
Many Different Internet Service Providers

- Each network is independent
- Interoperability requires using Internet standards: IP, TCP
 - the Internet is global and must run these standards
 - your private intranet can do whatever you want it to do
Standardization

- standards are essential to interoperability on the Internet
- Internet Engineering Task Force www.ietf.org
 - standardizes Internet protocols: IP, TCP, HTTP, etc
 - open to all to participate, free of charge
 - relies on working code and rough consensus
- W3C www.w3c.org
 - standardizes web protocols and formats
 - industry-oriented consortium
 - requires approved and paid membership ($6,350 - $63,500 per year)
 - many standards do not require Internet-wide deployment
an architectural model that separates communication protocols into layers
- defines the functionality of each component and the interfaces between components
- layering helps to build complex systems, like using modules to build large programs

a particular implementation is free to combine layers or create new layers to create a more efficient or flexible system
The Internet Hourglass

Application Layer
- DNS
- DHCP
- HTTP
- SMTP
- FTP
- BitTorrent

Transport Layer
- UDP
- TCP

Network Layer
- IP
- Ethernet
- 802.11
- SONET
- ATM

Link Layer
Protocols

- a formal definition of how two or more entities communicate
- includes
 - format of messages
 - actions taken when a message is sent or received
 - actions taken when an event occurs
HTTP Request message format

- sent in ASCII format
- *request line*: method, URL, version
- *header lines*: additional method parameters
- ends with a carriage return and line feed

actions: what happens when a server gets a request?
Application Layer

- the focus of this class: client-server, peer-to-peer, web apps
- important topics
 - design
 - concurrency
 - performance evaluation
 - security
- use socket API to access transport protocols
Application Layer Services

- query-response: basic services
 - DHCP
 - DNS
- client-server communication: a server provides a service to clients
 - web
 - video and audio streaming
 - email
 - file transfer
- peer-to-peer communication: host collaborate to share content, acting as both clients and servers
 - Gnutella (and variants): file searching and sharing among peers
 - BitTorrent: file distribution from a well-known source
 - Coral: peer-to-peer web caching
Transport Layer

- delivers data between hosts on the Internet
- treats the Internet as a service that provides a virtual, but unreliable link between two computers
Transport Layer Services: TCP

- **connection-oriented**: requires state setup at sender and receiver
- **provides a reliable, ordered byte stream**
 - **reliable**: retransmits any segments that are lost
 - **ordered**: buffers and re-orders segments before delivery to application
 - **byte stream**: transfers bytes, not messages
- **provides flow control**: avoid overflowing the receiver’s buffer
- **provides congestion control**: avoid persistently overflowing network buffers
- **applications**: web, file transfer, remote login, email
Queues and Congestion Control

- **delay** is primarily caused by queueing
- **loss** is caused by queue overflow
- **both** are signs of **congestion**
 - packets are arriving faster than they can be serviced
 - delay and loss are signals to TCP congestion control algorithm
 - slow down
 - the **Internet needs congestion control to avoid persistent queue overflow**
 - fundamental control problem
Transport Layer Services: UDP

- **connectionless**: no state setup
- **unreliable**: lost packets are not re-sent
- no flow control
- no congestion control
- applications: query-response (DNS, DHCP), streaming media (voice, video), some peer-to-peer protocols
Network Layer

- forwards packets between computers and routers on the Internet
Network Layer Services: IP

- common protocol needed to interoperate with other computers on the Internet
- data from transport layer is divided into packets (about 1.5 KB) and sent individually
- implements a best-effort service model - routers make their best effort to deliver all packets, but packets may be
 - delayed (long queues in the network)
 - dropped (queue overflow)
 - duplicated (mistaken retransmission by TCP)
 - re-ordered (packets may take different paths)
- reliability and ordering are the responsibility of TCP
Host Names and Internet Addresses

- hosts can have one or more names
- each name can be associated with one or more addresses
- 32 bits, written in *dotted decimal form*
 - *byu.edu*: 128.187.16.167
 - *google.com*: 74.125.127.99, 74.125.127.103, 74.125.127.104, 74.125.127.105, 74.125.127.106, 74.125.127.147
- the Domain Name System **DNS** maps names to addresses
- a network is a group of hosts with the same prefix
 - 128.187.16.167 with a netmask of 128.187.16.167
 - 128.187.0.0
 - 128.187/16
Network Layer Services: Routing

- Routing protocols decide which path to use when sending packets to a given destination
 - Organized hierarchically: BGP in the backbone, anything you want (OSPF, IGRP, RIP) in your own network
 - Choose the best path for each destination and tell the router to use this path

- Primary goals
 - **Stability**: Paths must not change too often
 - **Scalability**: Must handle every possible destination on the Internet
 - **Policy**: Allow network administration to choose paths based on economic agreements between providers
 - **Security**: Prevent unauthorized re-routing and other attacks

- Scalable routing is currently a major concern for the Internet
Link and Physical Layers

- link layer: sends a frame on one link
- physical layer: sends bits on one link
Types of Links

- **key features**
 - bandwidth - number of bits that can be transmitted per second, measured in bps, Kbps, Mbps or Gbps
 - latency - the time it takes to propagate a bit down a link
 - shared vs dedicated resources

- **examples**
 - modem: < 56 Kbps
 - DSL: 256 Kbps up / 1 Mbps down (example)
 - Cable Internet: 2 Mbps up / 10 Mbps down, shared (example)
 - Ethernet: 10 - 1000 Mbps, shared or dedicated
 - wireless: wide range of bandwidths (54 Mbps for 802.11g), shared or dedicated with directional antenna