Introduction
Domain Name System

- people like to use names for computers (www.byu.edu), but computers need to use numbers (128.187.22.132)
- the Domain Name System (DNS) is a distributed database providing this service
 - a program sends a query to a local name server
 - the local name server contacts other servers as needed
- many DNS services
 - host name to IP address translation
 - host aliasing (canonical name versus alias names)
 - lookup mail server for a host
 - load distribution - can provide a set of IP addresses for one canonical name

Demonstration: dig
Names

- **domain name**: top-level domain (TLD) + one or more subdomains
 - example: cs.byu.edu

- **host name**: a domain name with one or more IP addresses associated with it

- **TLDs**
 - **ccTLD**: country codes (.us, .uk, .tv)
 - **gTLD**: generic (.com, .edu, .org, .net, .gov, .mil)
 - **iTLD**: infrastructure (.arpa)
 - see full list at [Wikipedia](https://en.wikipedia.org/wiki/InternetAssignedNumbersAuthority)

- may be 127 levels deep, 63 characters per label, 255 characters per name
DNS Hierarchy

- root, top-level domain (TLD), and local name servers
- each level represents a zone
Root Name Servers

• can be contacted by any local name server that can not resolve a name
• refers the local name server to another server down the hierarchy
• only 13 of them worldwide

Details at [Wikipedia]
Top-level Domain (TLD) Name Servers

- responsible for .com, .org, .net, .edu, .name, .info, etc, as well as all country domains (.uk, .fr, .jp, .us, etc)
- refer name queries to local name servers
- .com is run by Verisign
- .net is run by Verisign
- .edu is run by Educause (operated by Educause)
- .org is run by Public Interest Registry (operated by Afilias)
Local and Authoritative Name Servers

- **local name server**
 - run by a given organization, for its domain
 - resolve queries from hosts in the domain, forwarding them up the hierarchy as needed

- **authoritative name server**
 - provides answers to queries from hosts outside the domain for the zone
 - often the same as the local name server

- a local name server can be a caching-only name server – it is not authoritative for any domain, it simply makes queries for hosts and caches DNS responses
Queries and Caching
Iterated Query

- local name server contacts root name server if it doesn’t have the mapping
- iterated query: each server that doesn’t know the mapping tells the local name server the identity of the next server in the hierarchy that can answer the query
Recursive Query

- recursive query: root name server (and other servers) may forward the query for the local name server and return the reply when done
- puts a heavier load on the root name server
- query type indicates whether it is recursive or iterative, name servers are not required to support recursive queries
Reverse Mappings

- what if you want to lookup the name associated with an IP address?
- this is very useful for authenticating that someone comes from an authorized domain, e.g. check that they can send email through your server
- addresses turned into a name by reversing dotted-decimal notation and appending IN-ADDR.ARPA
 - 128.187.22.132 \(\Rightarrow\) 132.22.187.128.IN-ADDR.ARPA
- TLD server in charge of .ARPA
- when IP addresses are assigned, the authoritative name server is also assigned a prefix from the reverse mapping space
Caching

- any name server that learns a mapping caches it
- cache entries time out after some time – timeout value set by the authoritative name server
- TLD servers usually cached in a local name server, so root name server not visited often
Replication

- an organization typically wants to replicate its authoritative DNS server in case it fails or needs maintenance
- define a master and various secondary servers for the zone
- secondary servers must poll master for updates to the zone and perform a “zone transfer”
- RFC 2136 specifies mechanisms for dynamically updating DNS entries (e.g. for hosts using DHCP, mobile hosts)
Protocol
DNS Records

RR format: (name, value, type, ttl)

- **type=A**
 - name is a host name
 - value is an IP address

- **type=CNAME**
 - name is an alias for the real name
 - value is the canonical name
 - e.g. ilab.cs.byu.edu is really carmelo.cs.byu.edu

- **type=MX**
 - name is a host name
 - value is the name of the mail server associated with the name

- **type=NS**
 - name is a domain
 - value is IP address of authoritative domain server for this domain
DNS Messages

- **Identification**
 - Number of questions
 - Number of authority RRs

- **Flags**
 - Number of answer RRs
 - Number of additional RRs

- **Questions**
 - (variable number of questions)

- **Answers**
 - (variable number of resource records)

- **Authority**
 - (variable number of resource records)

- **Additional information**
 - (variable number of resource records)

- **Identification** is 16 bits, unique to the query, reply uses the same number.

- **Flags**
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative (vs cached)

- **query and reply messages use same format**
Adding DNS Records

- example: register the new name zappala.org
- register the name at a registrar (e.g., GoDaddy)
- provide registrar with names and IP addresses of your authoritative name server (primary and secondary - comes from hosting service)
- registrar inserts two RRs into the .com TLD server
 - (zappala.org, ns1.namecheap.com, NS)
 - (ns1.namecheap.com, 64.65.1.112, A)
- authoritative name server adds a Type A record and a Type MX record for zappala.org
History and Growth
• use a text file to map names to addresses: hosts.txt
• to update an address
 • email your changes to the NIC
 • the NIC updates the hosts.txt file every few days
 • download the hosts.txt file via FTP
• problems
 • single point of failure
 • consistency
 • traffic volume
 • delay
 • maintenance
IANA

- Internet Addressing and Naming Authority
- assigns globally-unique names, addresses, ports, character encodings, and other parameters that require central administration
- run by Jon Postel at the Information Sciences Institute, which is affiliated with USC
 - wrote the original RFCs for IP, ICMP, TCP
 - wrote or edited 200+ RFCs
 - Postel’s Law: be conservative in what you do, be liberal in what you accept from others
- funded by the Department of Defense
1984: Paul Mockapetris (ISI) defined the Domain Name System in 1984, RFCs 882 and 883 (later superseded by RFCs 1034 and 1035)
 - distributed database of name servers
 - application-layer protocol to query name servers
 - end-to-end principle – keep the core of the network as simple as possible, put complex functionality at the edges

1992: NSF awards a contract to Network Solutions for maintenance of gTLDs (.com, .org, .net, .edu): $100 to register a name

1998: government decides to privatize DNS

2000: transition to ICANN
ICANN

• about
 • formed to privatize functions of IANA
 • originally intended to have Jon Postel as CTO, but he died in 1998
 • California non-profit run out of ISI

• manages IANA functions

• establishes domain name policy
 • which gTLDs should be created (\text{.biz, .info, .aero, .jobs, .travel}) and which should not be allowed (\text{.xxx})
 • settle domain name disputes for gTLDs

• criticism
 • governance - how board members are chosen, how meetings are held
 • policy - $50,000 fee to become a registrar, dispute resolution policies, more free market control of gTLDs
 • too much control by the US and its laws
Alternatives

- anyone can setup an alternative DNS root system
 - run a set of root name servers
 - establish a set of TLDs
 - 24/7 reliable operation
- examples
 - OpenNIC: democratically governed
 - UnifiedRoot: free market
The Growth of DNS and the Internet

- how can we measure the size of the Internet?
 - can’t count number of users who are on the net; must estimate
 - some hosts have multiple domain names and IP addresses
 - can’t tell if some hosts are missing

- can’t determine the exact size of the Internet or the number of users

- approximations
 - count domain names with IP addresses (old)
 - count IP addresses with domain names (new)
Internet Growth (1981-2013)